Characterization of novel bacteriochlorophyll-a-containing red filaments from alkaline hot springs in Yellowstone National Park
Sarah M. Boomer, Beverly K. Pierson, Ruthann Austinhirst, Richard W. Castenholz
Archives of Microbiology, 2000
Abstract
Novel, red, filamentous, gliding bacteria formed deep red layers in several alkaline hot springs in Yellowstone National Park. Filaments contained densely layered intracellular membranes and bacteriochlorophyll a. The in vivo absorption spectrum of the red layer filaments was distinct from other phototrophs, with unusual bacteriochlorophyll a signature peaks in the near-infrared (IR) region (807 nm and 911 nm). These absorption peaks were similar to the wavelengths penetrating to the red layer of the mets as measured with in situ spectroradiometry. The filaments also demonstrated maximal photosynthetic uptake of radiolabeled carbon sources at these wavelengths. The red layer filaments displayed anoxygenic photoheterotrophy, as evidenced by the specific incorporation of acetate, not bicarbonate, and by the absence of oxygen production. Photoheterotrophy was unaffected by sulfide and oxygen, but was diminished by high-intensity visible light. Near-IR radiation supported photoheterotrophy. Morphologically and spectrally similar filaments were observed in several springs in Yellowstone National Park, including Octopus Spring. Taken together, these data suggest that the red layer filaments are most similar to the photoheterotroph, Heliothrix oregonensis. Notable differences include mat position and coloration, absorption spectra, and prominent intracellular membranes.
NOTE: the article text supplied here is for educational purposes only.
*Don't have Adobe Reader?
Get the latest version.
NOTE: Some versions of Adobe Reader have problems with Google Chrome. Either resize the browser to view the paper or enable
the Chrome internal PDF viewer by entering chrome://plugins in your address bar and clicking enable for the Chrome PDF Viewer plugin.