Participants On This Publication
Organisms In This Publication
Environmental Science & Technology, 2004      Bacterial Populations Associated with the Oxidation and Reduction of Arsenic in an Unsaturated Soil
Richard E. Macur, Colin R. Jackson, Lina M. Botero, Timothy R. McDermott, and William P. Inskeep
Environmental Science & Technology, 2004
Abstract

Microbial populations responsible for the oxidation and reduction of As were examined in unsaturated (aerobic) soil columns treated with 75 uM arsenite [As(III)] or 250 uM arsenate [As(V)]. Arsenite [As(III)] was rapidly oxidized to As(V) via microbial activity, whereas no apparent reduction of As(V) was observed in the column experiments. Eight aerobic heterotrophic bacteria with varying As redox phenotypes were isolated from the same columns. Three isolates, identified as Agrobacterium tumefaciens-, Pseudomonas fluorescens-, and Variovorax paradoxus-like organisms (based on 16S sequence), were As(III) oxidizers, and all were detected in community DNA fingerprints generated by PCR coupled with denaturing gradient gel electrophoresis. The five other isolates were identified (16S gene sequence) as A. tumefaciens, Flavobacterium sp., Microbacterium sp., and two Arthrobacter sp.-like organisms and were shown to rapidly reduce As(V) under aerobic conditions. Although the two A. tumefaciens-like isolates exhibited opposite As redox activity, their 16S rDNA sequences (~1400 bp) were 100% identical, and both were shown to contain putative arsC genes. Our results support the hypothesis that bacteria capable of either oxidizing As(III) or reducing As(V) coexist and are ubiquitous in soil environments, suggesting that the relative abundance and metabolic activity of specific microbial populations plays an important role in the speciation of inorganic As in soil pore waters.

NOTE: the article text supplied here is for educational purposes only.
*Don't have Adobe Reader? Get the latest version.

NOTE: Some versions of Adobe Reader have problems with Google Chrome. Either resize the browser to view the paper or enable the Chrome internal PDF viewer by entering chrome://plugins in your address bar and clicking enable for the Chrome PDF Viewer plugin.